Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of a High-quality Zn(S,O,OH) thin film via chemical bath deposition for Cd-free Cu(In,Ga)Se2 solar cells

Identifieur interne : 000C30 ( Main/Repository ); précédent : 000C29; suivant : 000C31

Growth of a High-quality Zn(S,O,OH) thin film via chemical bath deposition for Cd-free Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:13-0239260

Descripteurs français

English descriptors

Abstract

This study focused on the characterization and optimization of a Zn(S,O,OH) thin film via chemical bath deposition (CBD) on a Cu(In,Ga)Se2 (CIGS) film in order to obtain a reproducible and high-quality Cd-free buffer layer. High-resolution images of the actual film growth during the CBD process were observed to deeply understand the growth conditions for a uniform and pinhole-free Zn(S,O,OH) film on the CIGS film. The homogeneous precipitation of Zn(S,O,OH) was suppressed through the complexation reaction in the solution, and the heterogeneous precipitation of Zn(S,O,OH) was activated on the CIGS film by increasing the NH3 concentration. At NH3 concentration of 7 M, the Zn(S,O,OH) film grown on the CIGS film completely covered the CIGS surface via the heterogeneous precipitation of Zn(S,O,OH). However, it contained many pinholes. The pinholes were eliminated by suppressing the formation of the Zn(OH)2 precipitates at a lower temperature (73 C). At the optimized conditions of the CBD process, the buffer film grown on the CIGS film contained a large amount of oxygen in the form of Zn-O and Zn-OH bonds. By annealing the Zn(S,O,OH) film, the content of the Zn-OH bond decreased through dehydration and that of the Zn-O bond increased. The JSC of the cell performance was greatly improved by annealing the Zn(S,O,OH) film and a conversion efficiency of 14.2% with VOC=0.62 V, JSC=35.1 mA/cm2, and FF=65.1 was achieved.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0239260

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of a High-quality Zn(S,O,OH) thin film via chemical bath deposition for Cd-free Cu(In,Ga)Se
<sub>2</sub>
solar cells</title>
<author>
<name>DONG HYEOP SHIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JI HYE KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SEUNG TAE KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larina, Liudmila" uniqKey="Larina L">Liudmila Larina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Al Ammar, Essam A" uniqKey="Al Ammar E">Essam A. Al-Ammar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, King Saud University, PO BOX 800</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BYUNG TAE AHN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0239260</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0239260 INIST</idno>
<idno type="RBID">Pascal:13-0239260</idno>
<idno type="wicri:Area/Main/Corpus">000A57</idno>
<idno type="wicri:Area/Main/Repository">000C30</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Chemical bath deposition</term>
<term>Complexation</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Crystal growth</term>
<term>Dehydration</term>
<term>Film growth</term>
<term>Gallium selenides</term>
<term>Heat treatment</term>
<term>High resolution</term>
<term>Indium selenides</term>
<term>Optimization</term>
<term>Oxygen</term>
<term>Performance evaluation</term>
<term>Pinhole</term>
<term>Precipitation</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Zinc</term>
<term>Zinc hydroxide</term>
<term>Zinc oxide</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt bain chimique</term>
<term>Cellule solaire</term>
<term>Optimisation</term>
<term>Couche tampon</term>
<term>Haute résolution</term>
<term>Croissance film</term>
<term>Croissance cristalline</term>
<term>Piqûre corrosion</term>
<term>Précipitation</term>
<term>Complexation</term>
<term>Système tampon</term>
<term>Recuit</term>
<term>Traitement thermique</term>
<term>Déshydratation</term>
<term>Evaluation performance</term>
<term>Taux conversion</term>
<term>Oxyde de zinc</term>
<term>Hydroxyde de zinc</term>
<term>Sulfure de zinc</term>
<term>Couche mince</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Zinc</term>
<term>Oxygène</term>
<term>Zn(S,O,OH)</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Déshydratation</term>
<term>Zinc</term>
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study focused on the characterization and optimization of a Zn(S,O,OH) thin film via chemical bath deposition (CBD) on a Cu(In,Ga)Se
<sub>2</sub>
(CIGS) film in order to obtain a reproducible and high-quality Cd-free buffer layer. High-resolution images of the actual film growth during the CBD process were observed to deeply understand the growth conditions for a uniform and pinhole-free Zn(S,O,OH) film on the CIGS film. The homogeneous precipitation of Zn(S,O,OH) was suppressed through the complexation reaction in the solution, and the heterogeneous precipitation of Zn(S,O,OH) was activated on the CIGS film by increasing the NH
<sub>3</sub>
concentration. At NH
<sub>3</sub>
concentration of 7 M, the Zn(S,O,OH) film grown on the CIGS film completely covered the CIGS surface via the heterogeneous precipitation of Zn(S,O,OH). However, it contained many pinholes. The pinholes were eliminated by suppressing the formation of the Zn(OH)
<sub>2</sub>
precipitates at a lower temperature (73 C). At the optimized conditions of the CBD process, the buffer film grown on the CIGS film contained a large amount of oxygen in the form of Zn-O and Zn-OH bonds. By annealing the Zn(S,O,OH) film, the content of the Zn-OH bond decreased through dehydration and that of the Zn-O bond increased. The J
<sub>SC</sub>
of the cell performance was greatly improved by annealing the Zn(S,O,OH) film and a conversion efficiency of 14.2% with V
<sub>OC</sub>
=0.62 V, J
<sub>SC</sub>
=35.1 mA/cm
<sup>2</sup>
, and FF=65.1 was achieved.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of a High-quality Zn(S,O,OH) thin film via chemical bath deposition for Cd-free Cu(In,Ga)Se
<sub>2</sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DONG HYEOP SHIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JI HYE KIM</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SEUNG TAE KIM</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LARINA (Liudmila)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>AL-AMMAR (Essam A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BYUNG TAE AHN</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, King Saud University, PO BOX 800</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>76-82</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000503882310110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0239260</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study focused on the characterization and optimization of a Zn(S,O,OH) thin film via chemical bath deposition (CBD) on a Cu(In,Ga)Se
<sub>2</sub>
(CIGS) film in order to obtain a reproducible and high-quality Cd-free buffer layer. High-resolution images of the actual film growth during the CBD process were observed to deeply understand the growth conditions for a uniform and pinhole-free Zn(S,O,OH) film on the CIGS film. The homogeneous precipitation of Zn(S,O,OH) was suppressed through the complexation reaction in the solution, and the heterogeneous precipitation of Zn(S,O,OH) was activated on the CIGS film by increasing the NH
<sub>3</sub>
concentration. At NH
<sub>3</sub>
concentration of 7 M, the Zn(S,O,OH) film grown on the CIGS film completely covered the CIGS surface via the heterogeneous precipitation of Zn(S,O,OH). However, it contained many pinholes. The pinholes were eliminated by suppressing the formation of the Zn(OH)
<sub>2</sub>
precipitates at a lower temperature (73 C). At the optimized conditions of the CBD process, the buffer film grown on the CIGS film contained a large amount of oxygen in the form of Zn-O and Zn-OH bonds. By annealing the Zn(S,O,OH) film, the content of the Zn-OH bond decreased through dehydration and that of the Zn-O bond increased. The J
<sub>SC</sub>
of the cell performance was greatly improved by annealing the Zn(S,O,OH) film and a conversion efficiency of 14.2% with V
<sub>OC</sub>
=0.62 V, J
<sub>SC</sub>
=35.1 mA/cm
<sup>2</sup>
, and FF=65.1 was achieved.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Haute résolution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High resolution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Alta resolucion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Croissance cristalline</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Crystal growth</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Crecimiento cristalino</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Piqûre corrosion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Pinhole</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Picadura corrosión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Précipitation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Precipitation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Precipitación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Complexation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Complexation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Complexación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Déshydratation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Dehydration</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Deshidratación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Hydroxyde de zinc</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Zinc hydroxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Zinc hidróxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Zn(S,O,OH)</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0239260
   |texte=   Growth of a High-quality Zn(S,O,OH) thin film via chemical bath deposition for Cd-free Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024